Lasserre Hierarchy, Higher Eigenvalues, and Approximation Schemes for Quadratic Integer Programming with PSD Objectives

نویسندگان

  • Venkatesan Guruswami
  • Ali Kemal Sinop
چکیده

We present an approximation scheme for optimizing certain Quadratic Integer Programming problems with positive semidefinite objective functions and global linear constraints. This framework includes well known graph problems such as Minimum graph bisection, Edge expansion, Uniform sparsest cut, and Small Set expansion, as well as the Unique Games problem. These problems are notorious for the existence of huge gaps between the known algorithmic results and NP-hardness results. Our algorithm is based on rounding semidefinite programs from the Lasserre hierarchy, and the analysis uses bounds for low-rank approximations of a matrix in Frobenius norm using columns of the matrix. For all the above graph problems, we give an algorithm running in time n ) with approximation ratio 1+ε min{1,λr} , where λr is the r’th smallest eigenvalue of the normalized graph Laplacian L. In the case of graph bisection and small set expansion, the number of vertices in the cut is within lower-order terms of the stipulated bound. Our results imply (1 + O(ε)) factor approximation in time n ∗/ε2) where r∗ is the number of eigenvalues of L smaller than 1 − ε. This perhaps gives some indication as to why even showing mere APX-hardness for these problems has been elusive, since the reduction must produce graphs with a slowly growing spectrum (and classes like planar graphs which are known to have such a spectral property often admit good algorithms owing to their nice structure). For Unique Games, we give a factor (1 + 2+ε λr ) approximation for minimizing the number of unsatisfied constraints in n time. This improves an earlier bound for solving Unique Games on expanders, and also shows that Lasserre SDPs are powerful enough to solve wellknown integrality gap instances for the basic SDP. We also give an algorithm for independent sets in graphs that performs well when the Laplacian does not have too many eigenvalues bigger than 1 + o(1). ∗Research supported in part by a Packard Fellowship, NSF CCF 0963975, and US-Israel BSF grant 2008293. Email: [email protected], [email protected] ISSN 1433-8092 Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 66 (2011)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rounding Lasserre SDPs using column selection and spectrum-based approximation schemes for graph partitioning and Quadratic IPs

We present an approximation scheme for minimizing certain Quadratic Integer Programming problems with positive semidefinite objective functions and global linear constraints. This framework includes well known graph problems such as Minimum graph bisection, Edge expansion, Sparsest Cut, and Small Set expansion, as well as the Unique Games problem. These problems are notorious for the existence ...

متن کامل

On the Hardest Problem Formulations for the 0/1 0 / 1 Lasserre Hierarchy

The Lasserre/Sum-of-Squares (SoS) hierarchy is a systematic procedure for constructing a sequence of increasingly tight semidefinite relaxations. It is known that the hierarchy converges to the 0/1 polytope in n levels and captures the convex relaxations used in the best available approximation algorithms for a wide variety of optimization problems. In this paper we characterize the set of 0/1 ...

متن کامل

On the Lasserre/Sum-of-Squares Hierarchy with Knapsack Covering Inequalities

The Lasserre/Sum-of-Squares hierarchy is a systematic procedure to strengthen LP relaxations by constructing a sequence of increasingly tight formulations. For a wide variety of optimization problems, this approach captures the convex relaxations used in the best available approximation algorithms. The capacitated covering IP is an integer program of the form min{cx : Ux ≥ d, 0 ≤ x ≤ b, x ∈ Z+}...

متن کامل

On Approximation Algorithms for Concave Mixed-Integer Quadratic Programming

Concave Mixed-Integer Quadratic Programming is the problem of minimizing a concave quadratic polynomial over the mixed-integer points in a polyhedral region. In this work we describe two algorithms that find an -approximate solution to a Concave Mixed-Integer Quadratic Programming problem. The running time of the proposed algorithms is polynomial in the size of the problem and in 1/ , provided ...

متن کامل

Constant Factor Lasserre Integrality Gaps for Graph Partitioning Problems

Partitioning the vertices of a graph into two roughly equal parts while minimizing the number of edges crossing the cut is a fundamental problem (called Balanced Separator) that arises in many settings. For this problem, and variants such as the Uniform Sparsest Cut problem where the goal is to minimize the fraction of pairs on opposite sides of the cut that are connected by an edge, there are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011